证明命题“三角形的三内角和为180°”是真命题.
网友回答
已知:∠A、∠B、∠C为△ABC的三个内角,
求证:∠A+∠B+∠C=180°,
证明:作射线BD,过C点作CE∥AB,如图,
∵CE∥AB,
∴∠1=∠A,∠2=∠B,
而∠C+∠1+∠2=180°,
∴∠A+∠B+∠C=180°.
所以命题“三角形的三内角和为180°”是真命题.
解析分析:先写出已知、求证,然后作射线BD,过C点作CE∥AB,利用平行线的性质把三角形三个角转化到一个平角的位置,然后根据平角的定义可判断三角形的三内角和为180°.
点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.