如图,△ABC中,AC=3,BC=4,AB=5,线段DE⊥AB,且△BDE的面积是△ABC面积的三分之一,那么,线段BD长为________.

发布时间:2020-08-05 07:03:24

如图,△ABC中,AC=3,BC=4,AB=5,线段DE⊥AB,且△BDE的面积是△ABC面积的三分之一,那么,线段BD长为________.

网友回答


解析分析:首先根据勾股定理的逆定理判断三角形ABC为直角三角形,再证明△ABC∽△EDB,利用相似三角形的性质即可求出线段BD长.

解答:∵AC=3,BC=4,AB=5,
∴AC2+BC2=AB2,
∴三角形ABC为直角三角形,
∴∠C=90°,
∵DE⊥AB,
∴∠EDB=90°,
∴△ABC∽△EDB,
∴()2=,
∵△BDE的面积是△ABC面积的三分之一,
∴BD=,
以上问题属网友观点,不代表本站立场,仅供参考!