发布时间:2019-08-07 18:11:31
用公式
1+2+3+……+n=n(n+1)/2
1²+2²+3²+……+n²=n(n+1)(2n+1)/6
a(n)=n(n+1)=n²+n
S(n)=(1²+2²+3²+……+n²)+(1+2+3+……+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=[n(n+1)/6]*[(2n+1)+3]
=[n(n+1)/6]*[2(n+2)]
=n(n+1)(n+2)/3
an=n(n+1)
可以拆分得 an=n^2+n
数列前n项和Sn=a1+a2+a3+.....an=1^2+1+2^2+2+3^2+3+4^2+4+.....n^2+n
整理得Sn=1^2+2^2+3^2+4^2+...n^2+1+2+3+4+.....+n
Sn可以拆分成两个部分S1=1^2+2^2+3^2+4^2+...n^2 S2=1+2+3+4+.....+n
S1=1^2+2^2+3^2+4^2+...n^2 =[n(n+1)(2n+1)]/6
S2=1+2+3+4+.....+n=[n(n+1)]/2
Sn=S1+S2=[n(n+1)(2n+1)]/6 +[n(n+1)]/2=[(n+1)(2n+n^2)]/3
an=n(n+1) = n(n+1) [(n+2) - (n-1)]/3 = [n(n+1)(n+2) - (n-1)n(n+1) ]/3
把an分成两个数相减这样就可以了
Sn = n(n+1) (n+2)/3