发布时间:2019-08-01 10:56:18
解答计算过程如下:
1、∂f/∂x1 = 2(√x1 + 3√x2 ) * (√x1)' = 2(√x1 + 3√x2 ) * 1/(2√x1) = 1 + 3√x2/√x1;
∂f/∂x2 = 2(√x1 + 3√x2 ) * (3√x2)' = 2(√x1 + 3√x2 ) * 3/(2√x2) = 3√x1/√x2 + 9;
2、∂f/∂x1 = (1/2)(2x1 + x2 ) * (2x1)' = (1/2)(2x1 + x2 ) * 2 = 2x1 + x2
∂f/∂x2 = (1/2)(2x1 + x2 ) * (x2)' = (1/2)(2x1 + x2 );
【1】z=(√x+3√y)²
∂z/∂x=2(√x+3√y)*(1/2)/√x=1+3√(y/x)
∂z/∂y=2(√x+3√y)*(3/2)/√y=3√(x/y)+9
【2】z=√(2x+y)
∂z/∂x=[(1/2)/√(2x+y)]*2=1/√(2x+y)
∂z/∂y=(1/2)/√(2x+y)