用适当方法解下列方程(1)x2+4x-12=0(2)x2-3x+2=0(3)x(x-1)=x(4)x2-3x+1=0(5)(4x-1)2=(5x+2)2(6)(2x+

发布时间:2020-08-06 00:52:45

用适当方法解下列方程
(1)x2+4x-12=0
(2)x2-3x+2=0
(3)x(x-1)=x
(4)x2-3x+1=0
(5)(4x-1)2=(5x+2)2
(6)(2x+1)2+3(2x+1)+2=0.

网友回答

解:(1)x2+4x-12=0,
(x+6)(x-2)=0,
解得:x1=2,x2=-6;

(2)x2-3x+2=0,
(x-1)(x-2)=0,
解得:x1=2,x2=1;

(3)x(x-1)=x,
x(x-1)-x=0,
x(x-1-1)=0,
解得:x1=0,x2=2;

(4)x2-3x+1=0,
b 2-4ac=9-4=5>0,
x==,
解得:x1=,x2=;

(5)(4x-1)2=(5x+2)2,
(4x-1)2-(5x+2)2=0,
[(4x-1)+(5x+2)][(4x-1)-(5x+2)]=0,
整理得出:(9x+1)(-x-3)=0,
解得:x1=-,x2=-3;

(6)(2x+1)2+3(2x+1)+2=0,
[(2x+1)+2][(2x+1)+1]=0,
整理得出:(2x+3)(2x+2)=0,
解得:x1=-,x2=-1.
解析分析:(1)利用十字相乘法分解因式,即可得出
以上问题属网友观点,不代表本站立场,仅供参考!