如图,在△ABC中,CF⊥AB,BE⊥AC,M、N分别是BC、EF的中点,试说明MN⊥EF.

发布时间:2020-08-06 06:09:25

如图,在△ABC中,CF⊥AB,BE⊥AC,M、N分别是BC、EF的中点,试说明MN⊥EF.

网友回答

证明:连接MF、ME,
∵CF⊥AB,在Rt△BFC中,M是BC的中点,
∴MF=BC(斜边中线等于斜边一半),
同理ME=BC,
∴ME=MF,
∵N是EF的中点,
∴MN⊥EF.

解析分析:连接MF、ME,根据直角三角形斜边上的中线等于斜边的一半可得到MF=BC=ME,再根据等腰三角形的三线合一的性质即可推出MN⊥EF.

点评:此题主要考查直角三角形斜边上的中线的性质及等腰三角形三线合一的性质的综合运用.
以上问题属网友观点,不代表本站立场,仅供参考!