二次函数的图象与x轴交于A,B两点,与y轴交于点C,如图所示,AC=2,BC=,∠ACB=90°,求二次函数图象的关系式.

发布时间:2020-08-10 22:02:17

二次函数的图象与x轴交于A,B两点,与y轴交于点C,如图所示,AC=2,BC=,∠ACB=90°,求二次函数图象的关系式.

网友回答

解:∵AC=2,BC=,∠ACB=90°,
∴AB==5;
∵∠AOC=∠ACB=90°,∠CAO=∠BAC,△AOC∽△ACB,
∴,
即AO=AC2÷AB=4,
∴AO=4,
∴BO=1;
∴A(-4,0),B(1,0);
同理可证△ACO∽△CBO
∴,
即;
∴CO2=4,
∴OC=2,
∴C(0,-2),
设二次函数关系式为y=ax2+bx+c,
把A(-4,0),B(1,0),C(0,-2)分别代入上式,得

解得;
∴所求二次函数图象的关系式为y=.
解析分析:Rt△ABC中,由勾股定理易求得AB的长,利用射影定理即可得到AC2=AO?AB,从而求得AO、BO的值,进而由OC2=OA?OB,求得OC的长,由此可得A、B、C三点的坐标,进而可利用待定系数法求得抛物线的解析式.

点评:此题主要考查的是二次函数解析式的确定、通过直角三角形和相似三角形的相关知识求得A、B、C三点的坐标,是解决问题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!