如图,矩形ABCD中,AB=8,AD=10,E是CD上一点,把△ADE沿直线AE翻折,D点恰好落在BC边上的F点处,则CE=________.
网友回答
3
解析分析:在△ABF中,利用勾股定理可求得BF的长,进而可求得CF长;同理在△CEF中,利用勾股定理可求得CE长.
解答:∵四边形ABCD是矩形,
∴∠B=∠C=90°,AD=BC=10,CD=AB=8.
∵△AEF是△ADE翻折得到的,
∴AF=AD=10,EF=DE,
∴BF=6,
∴FC=4,
∵FC2+CE2=EF2,
∴42+CE2=(8-CE)2,
解得CE=3.
故