如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.
求证:BC是⊙O切线.
网友回答
证明:如图,连接OD.设AB与⊙O交于点E.
∵AD是∠BAC的平分线,
∴∠BAC=2∠BAD,
又∵∠EOD=2∠EAD,
∴∠EOD=∠BAC,
∴OD∥AC.
∵∠ACB=90°,
∴∠BDO=90°,即OD⊥BC,
又∵OD是⊙O的半径,
∴BC是⊙O切线.
解析分析:如图,连接OD.欲证BC是⊙O切线,只需证明OD⊥BC即可.
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.