在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
网友回答
解:(1)EA1=FC.
证明:(证法一)∵AB=BC,
∴∠A=∠C.
由旋转可知,AB=BC1,∠A=∠C1,∠ABE=∠C1BF,
∴△ABE≌△C1BF.
∴BE=BF,又∵BA1=BC,
∴BA1-BE=BC-BF.即EA1=FC.
(证法二)∵AB=BC,∴∠A=∠C.
由旋转可知,∠A1=∠C,A1B=CB,而∠EBC=∠FBA1,
∴△A1BF≌△CBE.
∴BE=BF,∴BA1-BE=BC-BF,
即EA1=FC.
(2)四边形BC1DA是菱形.
证明:∵∠A1=∠ABA1=30°,
∴A1C1∥AB,同理AC∥BC1.
∴四边形BC1DA是平行四边形.
又∵AB=BC1,
∴四边形BC1DA是菱形.
(3)(解法一)过点E作EG⊥AB于点G,则AG=BG=1.
在Rt△AEG中,AE=.
由(2)知四边形BC1DA是菱形,
∴AD=AB=2,
∴ED=AD-AE=2-.
(解法二)∵∠ABC=120°,∠ABE=30°,∴∠EBC=90°.
在Rt△EBC中,BE=BC?tanC=2×tan30°=.
∴EA1=BA1-BE=2-.
∵A1C1∥AB,
∴∠A1DE=∠A.
∴∠A1DE=∠A1.
∴ED=EA1=2-.
解析分析:(1)根据旋转的性质得到对应边相等和对应角相等,从而得到全等三角形,根据全等三角形的性质进行证明;
(2)在(1)的基础上,易发现该四边形的四条边相等,从而证明是菱形;
(3)根据菱形的性质和解直角三角形的知识以及等腰三角形的性质求解.
点评:本题主要考查旋转、全等三角形、特殊平行四边形、解直角三角形等知识.解决本题的关键是结合图形,大胆猜想.