如图,点P是正方形ABCD的对角线BD上一点,连接PA、PC.
(1)证明:∠PAB=∠PCB;
(2)在BC上取一点E,连接PE,使得PE=PC,连接AE,判断△PAE的形状,并说明理由.
网友回答
(1)证明:∵在正方形ABCD中,BD是对角线,
∴AB=CB,∠ABD=∠CBD.
又∵BP=BP,
∴△ABP≌△CBP.
∴PA=PC,∠PAB=∠PCB.
(2)解:如图,△PAE是等腰直角三角形,理由如下:
∵PE=PC,
∴∠PEC=∠PCB.
又∵∠PAB=∠PCB,
∴∠PAB=∠PEC.
∵E是BC上一点,∠PEB+∠PEC=180°,
∴∠PAB+∠PEB=180°.
∵在四边形ABEP中,∠PAB+∠ABC+∠PEB+∠APE=360°,∠ABC=90°,
∴∠APE=90°.
∵PA=PC,PE=PC,
∴PA=PE.
∴△PAE是等腰直角三角形.
解析分析:(1)根据正方形的性质得AB=CB,∠ABD=∠CBD,又知BP=BP,即可证△ABP≌△CBP,于是得到PA=PC,∠PAB=∠PCB;
(2)根据PE=PC得到∠PEC=∠PCB,进而求出∠PAB=∠PEC,由E是BC上一点,∠PEB+∠PEC=180°求得∠PAB+∠PEB=180°,进而求出∠APE=90°,再根据PA=PC,PE=PC,求出PA=PE,于是证得△PAE是等腰直角三角形.
点评:本题主要考查正方形的性质和全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握正方形的性质和全等三角形的判定定理,此题难度不大.