如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影

发布时间:2020-08-07 12:55:34

如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.

网友回答

(1)证明:连接OD,
∵∠ACD=60°,
∴由圆周角定理得:∠AOD=2∠ACD=120°,
∴∠DOP=180°-120°=60°,
∵∠APD=30°,
∴∠ODP=180°-30°-60°=90°,
∴OD⊥DP,
∵OD为半径,
∴DP是⊙O切线;

(2)解:∵∠P=30°,∠ODP=90°,OD=3cm,
∴OP=6cm,由勾股定理得:DP=3cm,
∴图中阴影部分的面积S=S△ODP-S扇形DOB=×3×3-=(-π)cm2
解析分析:(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可;
(2)求出OP、DP长,分别求出△DOB和三角形ODP面积,即可求出
以上问题属网友观点,不代表本站立场,仅供参考!