如图所示,在倾角为θ的光滑斜劈P的斜面上有两个用轻质弹簧相连的物块A、B,C为一垂直固定在斜面上的挡板.A、B质量均为m,弹簧的劲度系数为k,系统静止于光滑水平面.现开始用一水平力F从零开始缓慢增大作用于P,(物块A一直没离开斜面,重力加速度g)下列说法正确的是A.力F较小时A相对于斜面静止,F增加到某一值,A相对于斜面向上滑行B.力F从零开始增加时,A相对斜面就开始向上滑行C.B离开挡板C时,弹簧伸长量为mgsinθ/kD.B离开挡板C时,弹簧为原长
网友回答
BD
解析分析:以A为研究对象,根据加速度方向分析,由牛顿第二定律分析A的运动情况.以AB整体为研究对象,求出B刚离开挡板C时的加速度,再对B研究,求解弹簧的弹力,确定弹簧的状态.
解答:A、B用水平力F作用于P时,A向左加速运动,具有水平向左的加速度,设加速度大小为a,将加速度分解如图,
根据牛顿第二定律得
?mgsinθ-kx=macosθ
当加速度a增大时,x减小,即弹簧的压缩量减小,物体A相对斜面开始向上滑行.故A错误,B正确.
C、D设B刚离开挡板C时AB的加速度为a,弹簧对B的弹力大小为f,此时挡板C对B没有弹力.以AB整体为研究对象,分析受力如图1,根据牛顿第二定律得
??? (mA+mB)gtanθ=(mA+mB)a
得a=gtanθ
再以B为研究对象,分析受力如图2所示,由牛顿第二定律
? 水平方向:mBgtanθ-fcosθ=mBa
代入解得f=0,则弹簧为原长.
故C错误,D正确.
故选BD
点评:本题运用牛顿第二定律物体的运动状态和受力情况,要灵活选择研究的对象,几个物体的加速度相同时,可以运用整体法研究加速度.