如图,BD是⊙O的直径,E是⊙O上的一点,直线AE交BD延长线于A,BC⊥AE于C,且∠CBE=∠DBE.
(1)求证:AC是⊙O的切线.
(2)若⊙O的半径为2,AE=,求AD的长.
网友回答
解:(1)连接OE
∴OB=OE,∴∠OBE=∠OEB,
∵∠CBE=∠DBE,∴∠OEB=∠CBE,
∴OE∥BC,
∵BC⊥AE,
∴OE⊥AC,
∴AC是⊙O的切线;
(2)在直角三角形AOE中,OE2+AE2=AO2,
∵OD=OE=2,AE=,
∴4+32=(AD+2)2,
∴AD+2=6,
∴AD=4.
解析分析:(1)连接OE,则OB=OE,即可得出∠OBE=∠OEB,再由已知得出∠OEB=∠CBE,则OE∥BC,从而证出OE⊥AC;
(2)在直角三角形AOE中,根据勾股定理可直接求出AD.
点评:本题考查了切线的性质和判定,勾股定理以及圆周角定理,是基础知识要熟练掌握.