阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条

发布时间:2020-08-09 17:39:30

阅读下列材料:
问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.
小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.
请你参考小明同学的思路,解决下列问题:
(1)图2中∠BPC的度数为______;
(2)如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为______,正六边形ABCDEF的边长为______.

网友回答

解:(1)如图2.
∵△BPC绕点B逆时针旋转90°,得到了△BP′A,
∴∠P′BP=90°,BP′=BP=,P′A=PC=1,∠BP′A=∠BPC,
∴△BPP′为等腰直角三角形,
∴PP′=PB=2,∠BP′P=45°,
在△APP′中,AP=,PP′=2,AP′=1,
∵()2=22+12,
∴AP2=PP′2+AP′2,
∴△APP′为直角三角形,且∠AP′P=90°
∴∠BP′A=45°+90°=135°,
∴∠BPC=∠BP′A=135°;

(2)如图3.
∵六边形ABCDEF为正六边形,
∴∠ABC=120°,
把△BPC绕点B逆时针旋转120°,得到了△BP′A,
∴∠P′BP=120°,BP′=BP=4,P′A=PC=2,∠BP′A=∠BPC,
∴∠BP′P=∠BPP′=30°,
过B作BH⊥PP′于H,
∵BP′=BP,
∴P′H=PH,
在Rt△BP′H中,∠BP′H=30°,BP′=4,
∴BH=BP′=2,P′H=BH=2,
∴P′P=2P′H=4,
在△APP′中,AP=2,PP′=4,AP′=2,
∵(2)2=(4)2+22,
∴AP2=PP′2+AP′2,
∴△APP′为直角三角形,且∠AP′P=90°,
∴∠BP′A=30°+90°=120°,
∴∠BPC=120°,
过A作AG⊥BP′于G点,
∴∠AP′G=60°,
在Rt△AGP′中,AP′=2,∠GAP′=30°,
∴GP′=AP′=1,AG=GP′=,
在Rt△AGB中,GB=GP′+P′B=1+4=5,
AB===2,
即正六边形ABCDEF的边长为2.
以上问题属网友观点,不代表本站立场,仅供参考!