如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上.OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺吋针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1,绕点B1按顺吋针方向旋转?120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).
小慧还发现:三角形纸片在上述两次旋转的过程中.顶点O运动所形成的图形是两段圆弧,即和,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形A001的面积、△AO1B1的面积和扇形B1O1O2的面积之和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片0ABC放在直线l2上,0A边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B2处,小慧又将正方形纸片?AO1C1B1绕顶点B1按顺时针方向旋转90°,….按上述方法经过若干次旋转后,她提出了如下问题:
问题①:若正方形纸片0ABC按上述方法经过3次旋转,求顶点0经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OABC按上述方法经过5次旋转.求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点0经过的路程是?
网友回答
解:①如图所示,正方形纸片OABC经过3次旋转,顶点O运动所形成的图形是三段圆弧,
∴顶点O在此过程中经过的路程为:2+=(1+)π,
顶点O在此过程中经过的图形与直线l2围成的图形面积为:
×2++2××1=1+π.
正方形纸片OABC经过5次旋转,顶点O在此过程中经过的路程为:
3+=(+)π,
②正方形纸片OABC经过3次旋转,顶点O在此过程中经过的路程为:
∵2+=(1+)π,根据第四次正方形旋转时O点不动,也就是此时也是正方形纸片OABC经过4次旋转的路程;
∴=20(1+)π+,
∴正方形纸片OABC经过了:20×4+1=81次旋转.
解析分析:①根据正方形旋转3次和5次的路径,利用弧长计算公式以及扇形面积公式求出即可,
②再利用正方形纸片OABC经过4次旋转得出旋转路径,进而得出=20(1+)π+,即可得出旋转次数.
点评:此题主要考查了图形的旋转以及扇形面积公式和弧长计算公式,分别得出旋转3,4,5次旋转的路径是解决问题的关键.