如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.
网友回答
(1)证明:∵四边形ABCD是正方形,
∴AD=AB,
∵∠1=∠2,∠3=∠4,
∴△ABE≌△DAF.
(2)解:∵四边形ABCD是正方形,∠AGB=30°,
∴AD∥BC,
∴∠1=∠AGB=30°,
∵∠1+∠4=∠DAB=90°,
∵∠3=∠4,
∴∠1+∠3=90°,
∴∠AFD=180°-(∠1+∠3)=90°,
∴DF⊥AG,
∴DF=AD=1,
∴AF=,
∵△ABE≌△DAF,
∴AE=DF=1,
∴EF=-1.
故所求EF的长为-1.
解析分析:(1)根据已知及正方形的性质,利用ASA即可判定△ABE≌△DAF;
(2)根据正方形的性质及直角三角形的性质可得到DF的长,根据勾股定理可求得AF的长,从而就不难求得EF的长.
点评:此题主要考查学生对正方形的性质及全等三角形的判定的综合运用.