如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠DBC=45°,点F在AB边上,点E在BC边上,将△BFE沿折痕EF翻折,使点B落在点D处.若AD=1,BC=5.
求:(1)BD的长;
(2)∠C的正切值.
网友回答
解:(1)由题意得△BFE≌△DFE.
∴DE=BE.
∵∠DBC=45°,
∴∠BDE=∠DBE=45度.
∴∠DEB=90度.
即DE⊥BC.
∵在等腰梯形ABCD中,
AD=1,BC=5,
∴CE=(BC-AD)=2.
∴BE=DE=3.
∴由勾股定理求得BD=.
(2)在△DEC中,∠DEC=90°,
DE=3,EC=2,
∴tan∠C=.
解析分析:(1)由题意得△BFE≌△DFE,得到DE=BE,根据已知可推出DE⊥BC,从而得到CE,BE,DE的长,由勾股定理可求得BD的长;
(2)已知DE,CE的长,则根据正切公式即可求得∠C的正切值.
点评:此题主要考查学生对等腰梯形的性质的理解及运用.