已知:如图,抛物线y=ax2+bx+c的顶点C在以D(-2,-2)为圆心,4为半径的圆上,且经过⊙D与x轴的两个交点A、B,连接AC、BC、OC.(1)求点C的坐标;

发布时间:2020-08-08 19:16:35

已知:如图,抛物线y=ax2+bx+c的顶点C在以D(-2,-2)为圆心,4为半径的圆上,且经过⊙D与x轴的两个交点A、B,连接AC、BC、OC.
(1)求点C的坐标;
(2)求图中阴影部分的面积;
(3)在抛物线上是否存在点P,使DP所在直线平分线段OC?若存在,求出点P的坐标;若不存在,请说明理由.

网友回答

解:(1)如图,作CH⊥x轴,垂足为H,
∵直线CH为抛物线对称轴,
∴CH垂直平分AB,
∴CH必经过圆心D(-2,-2).
∵DC=4,
∴CH=6
∴C点的坐标为(-2,-6).

(2)连接AD.
在Rt△ADH中,AD=4,DH=2,
∴∠HAD=30°,AH=
∴∠ADC=120°
∴S扇形DAC=π
S△DAC=AH?CD=×2×4=4.
∴阴影部分的面积S=S扇形DAC-S△DAC=π-4.

(3)又∵AH=2,H点坐标为(-2,0),H为AB的中点,
∴A点坐标为(-2-2,0),B点坐标为(,0).
又∵抛物线顶点C的坐标为(-2,-6),
设抛物线解析式为y=a(x+2)2-6.
∵B(,0)在抛物线上,
∴a(2-2+2)2-6=0,
解得.
∴抛物线的解析式为y=(x+2)2-6.
设OC的中点为E,过E作EF⊥x轴,垂足为F,连接DE,
∵CH⊥x轴,EF⊥x轴,
∴CH∥EF
∵E为OC的中点,
∴EF=CH=3,OF=OH=1.
即点E的坐标为(-1,-3).
设直线DE的解析式为y=kx+b(k≠0),
∴,
解得k=-1,b=-4,
∴直线DE的解析式为y=-x-4.
若存在P点满足已知条件,则P点必在直线DE和抛物线上.
设点P的坐标为(m,n),
∴n=-m-4,即点P坐标为(m,-m-4),
∴-m-4=(m+2)2-6,
解这个方程,得m1=0,m2=-6
∴点P的坐标为(0,-4)和(-6,2).
故在抛物线上存在点P,使DP所在直线平分线段OC.
解析分析:(1)作CH⊥x轴,垂足为H,CH必经过圆心D,易得CH=6,则点C的坐标可以得到.
(2)连接OA,OC则阴影部分的面积S=S扇形DAC-S△DAC;
(3)设OC的中点是E,E点的坐标就可以求出,利用待定系数法就可以求出直线DE的解析式,直线与抛物线的交点就是所求的点P.

点评:本题主要考查了待定系数法求函数的解析式,以及弓形面积的求法,转化为扇形的面积与三角形的面积的差的问题.
以上问题属网友观点,不代表本站立场,仅供参考!