我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定

发布时间:2020-08-15 20:54:29

我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是______;
(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求+的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=______,DB=______;
②在AB上取一点P,可设AP=______,BP=______;
③+的最小值即为线段______和线段______长度之和的最小值,最小值为______.

网友回答

解:(1)抛物线所对应的二次函数的最大值是4;?

(2)①如图,点P即为所求.
(作法:延长AC到点E,使CE=AC,连接BE,交直线l于点P,则点P即为所求)
说明:不必写作法和证明,但要保留作图痕迹;不连接PA不扣分;
如延长BD到点M,使DM=BD,连接AM,同样可得到P点.
②过点A作AF⊥BD,垂足为F,过点E作EG⊥BD,交BD的延长线于点G,则有四边形ACDF、CEGD都是矩形.
∴FD=AC=CE=DG=1,EG=CD=AF.
∵AB=3,BD=2,
∴BF=BD-FD=1,BG=BD+DG=3,
∴在Rt△ABF中,AF2=AB2-BF2=8,
∴AF=2,EG=2.
∴在Rt△BEG中,BE2=EG2+BG2=17,BE=.
∴PA+PB的最小值为.
即所用水管的最短长度为.???

(3))①作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=3,BD=5,
②在AB上取一点P,可设AP=x,BP=y,
③+的最小值即为线段 PC和线段 PD长度之和的最小值,
∴作C点对称点C′,连接C′D,过C′点作C′E⊥DB,交于点E,
∵AC=BE=3,DB=5,AB=C′E=6,
∴DE=8,
C′D==10,
∴最小值为10.
以上问题属网友观点,不代表本站立场,仅供参考!