如图1,已知直线y=-x+m与反比例函数y=的图象在第一象限内交于A、B两点(点A在点B的左侧),分别与x、y轴交于点C、D,AE⊥x轴于E.(1)若OE?CE=12

发布时间:2020-08-06 02:44:54

如图1,已知直线y=-x+m与反比例函数y=的图象在第一象限内交于A、B两点(点A在点B的左侧),分别与x、y轴交于点C、D,AE⊥x轴于E.
(1)若OE?CE=12,求k的值.
(2)如图2,作BF⊥y轴于F,求证:EF∥CD.
(3)在(1)(2)的条件下,EF=,AB=2,P是x轴正半轴上的一点,且△PAB是以P为直角顶点的等腰直角三角形,求P点的坐标.

网友回答

(1)解:设OE=a,则A(a,-a+m),
∵点A在反比例函数图象上,∴a(-a+m)=k,即k=-a2+am,
由一次函数解析式可得C(2m,0),
∴CE=2m-a,
∴OE.CE=a(2m-a)=-a2+2am=12,
∴k=(-a2+2am)=×12=6.

(2)证明:连接AF、BE,过E、F分别作FM⊥AB,EN⊥AB,
∴FM∥EN,
∵AE⊥x轴,BF⊥y轴,
∴AE⊥BF,
S△AEF=AE?OE=,
S△BEF=BF?OF=,
∴S△AEF=S△BEF,
∴FM=EN,
∴四边形EFMN是矩形,
∴EF∥CD;

(3)解:由(2)可知,EF=AD=BC=,
∴CD=4,
由直线解析式可得OD=m,OC=2m,
∴OD=4,
又EF∥CD,
∴OE=2OF,
∴OF=1,0E=2,
∴DF=3,
∴AE=DF=3,
∵AB=2,
∴AP=,
∴EP=1,
∴P(3,0).
解析分析:(1)分别设出一次函数解析式和反比例函数的解析式,代入点A的坐标,即可得出各解析式.
(2)连接AF、BE,过E、F分别作FM⊥AB,EN⊥AB,得出FM∥EN,再根据AE⊥x轴,BF⊥y轴,得出AE⊥BF,由此得出S△AEF=S△BEF,最后证出FM=EN,得出四边形EFMN是矩形,由此证出EF∥CD;
(3)由(2)得出EF=AD=BC和CD的值,再由直线解析式可得OD=m,OC=2m,得出OD=4,再根据EF∥CD,得出OF和0E、DF的值,最后根据EF=,AB=2得出EP的值,即可求出P点的坐标;

点评:此题考查了反比例函数的综合题;解题的关键是画出图象,找出对应关系;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
以上问题属网友观点,不代表本站立场,仅供参考!