如图在边长为2的正方形ABCD中,E,F,O分别是AB,CD,AD的中点,以O为圆心,以OE为半径画弧EF.P是上的一个动点,连接OP,并延长OP交线段BC于点K,过点P作⊙O的切线,分别交射线AB于点M,交直线BC于点G.若=3,则BK=________.
网友回答
解析分析:根据MG与⊙O相切得OK⊥MG.设直线OK交AB的延长线于点H,易证∠MGB=∠BHK.根据三角函数定义,tan∠MGB=tan∠BHK==,从而有AH=3,BH=3BK.因为AB=2,所以BH=1,可求BK.
P为动点,当P接近F点时,本题另有一个解.
解答:(1)若OP的延长线与射线AB的延长线相交,设交点为H.如图1,
∵MG与⊙O相切,
∴OK⊥MG.
∵∠BKH=∠PKG,
∴∠MGB=∠BHK.
∵=3,
∴tan∠BHK=.
∴AH=3AO=3×1=3,
BH=3BK.
∵AB=2,
∴BH=1,
∴BK=.(2)若OP的延长线与射线DC的延长线相交,设交点为H.如图2,
同理可求得BK=.综上所述,本题应填.
点评:此题考查了切线的性质及三角函数等知识点,综合性强,难度较大.
本题需要特别注意有2个解,不要漏解.