如图,在梯形ABCD中,AB∥DC,∠D=90°,∠ACD=30°,AB=12,BC=10,求AD的长.

发布时间:2020-08-07 08:09:07

如图,在梯形ABCD中,AB∥DC,∠D=90°,∠ACD=30°,AB=12,BC=10,求AD的长.

网友回答

解:过点B作BE⊥AC于E,则∠AEB=∠BEC=90°.
∵AB∥DC,
∴∠BAE=∠ACD=30°.
又∵AB=12,
∴EB==6,AE=AB?cos30°=6.
在Rt△BEC中,∠BEC=90°,
∴EC=,
∴AC=AE+EC=+8.
在Rt△ADC中,∠D=90°,∠ACD=30°,
∴AD=.
解析分析:如图,过点B作BE⊥AC于E,把△ABC分割成两个直角三角形,然后解直角三角形ABE,求出AE、BE,再利用勾股定理在Rt△BEC求出CE,这样就求出AC,最后在Rt△ADC中解直角三角形就可以求出AD.

点评:此题把解直角三角形和勾股定理的计算和梯形的知识结合起来,利用三角形的知识解决梯形的问题.
以上问题属网友观点,不代表本站立场,仅供参考!