如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△EFG是等腰三角形.

发布时间:2020-08-10 14:49:00

如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△EFG是等腰三角形.

网友回答

证明:∵E,F,G分别是AB,CD,AC的中点.
∴GF=AD,GE=BC.
又∵AD=BC,
∴GF=GE,
即△EFG是等腰三角形.
解析分析:由于E,F,G分别是AB,CD,AC的中点,利用中位线定理,GF=AD,GE=BC,又因为AD=BC,所以GF=GE.

点评:本题通过给出的中点,利用中位线定理,证得边相等,从而证明等腰三角形,是一道基础题.
以上问题属网友观点,不代表本站立场,仅供参考!