已知,如图△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC.
网友回答
证明:如右图所示,
∵BD=DC,
∴∠3=∠4,
又∵∠1=∠2,
∴∠1+∠3=∠2+∠4,
即∠ABC=∠ACB,
∴△ABC是等腰三角形,
∴AB=AC,
在△ABD和△ACD中,
∴△ABD≌△ACD(SAS),
∴∠BAD=∠CAD,
∴AD平分∠BAC.
解析分析:由BD=DC,易知∠3=∠4,再结合∠1=∠2,利用等量相加和相等可得∠ABC=∠ACB,从而可知△ABC是等腰三角形,于是AB=AC,再结合BD=DC,∠1=∠2,利用SAS可证△ABD≌△ACD,从而有∠BAD=∠CAD,即AD平分∠BAC.
点评:本题考查了等腰三角形的判定和性质、全等三角形的判定和性质,解题的关键是证明△ABC是等腰三角形.