如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,已知四边形的周长为32,那么四边形ABCD的面积为A.16+24B.16C.24D.32+24

发布时间:2020-07-30 09:50:21

如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,已知四边形的周长为32,那么四边形ABCD的面积为A.16+24B.16C.24D.32+24

网友回答

A

解析分析:连接BD,则△ABD为等边三角形,△BCD为直角三角形,根据四边形周长计算BC,CD,即可求△BCD的面积,正△ABD的面积根据计算公式计算,即可求得四边形ABCD的面积为两个三角形的面积的和.

解答:解:连接BD,∵AB=AD=8,∴△ABD为正三角形,其面积为××AB×AD=16,∵BC+CD=32-8-8=16,且BD=8,BD2+CD2=BC2,解得BC=10,CD=6,∴直角△BCD的面积=×6×8=24,故四边形ABCD的面积为24+16.故选 A.

点评:本题考查了直角三角形中勾股定理的灵活运用,本题中求证△ABD是正三角形是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!