已知一个正多边形的一个外角等于一个内角的,求这个正多边形的边数及其所有对角线的条数.
网友回答
解:设此正多边形为正n边形.
∵正多边形的一个外角等于一个内角的,
∴此正多边形的外角和等于其内角和的,
∴360°=(n-2)?180°×,
解得n=5.
∴此正多边形所有的对线条数为:n(n-3)=×5×(5-3)=5.
答:正多边形的边数为5,其所有对角线有五条.
解析分析:多边形的内角和可以表示成(n-2)?180°,外角和是固定的360°,从而可根据一个正多边形的一个外角等于一个内角的列方程,求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.
点评:本题考查正多边形的内角和与外角和及多边形的对角线公式.关键是记住内角和的公式与外角和的特征.