如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.
(1)求sin∠BAC的值;
(2)如果OE⊥AC,垂足为E,求OE的长;
(3)求tan∠ADC的值.(结果保留根号)
网友回答
解:(1)∵AB是⊙O直径
∴∠ACB=90°
∵AB=5,BC=3
∴sin∠BAC=;
(2)∵OE⊥AC,O是⊙O的圆心
∴E是AC中点.
又∵O是AB的中点.
∴OE=BC=;
(3)∵AC==4
∴tan∠ADC=tan∠ABC=.
解析分析:(1)根据圆周角定理可得到∠ACB是直角,再根据三角函数求解即可;
(2)根据中位线定理求解即可;
(3)找到tan∠ADC=tan∠ABC是关键.
点评:此题主要考查锐角三角函数的定义,综合运用了圆周角定理、中位线定理、勾股定理等知识点.