如图,已知C是线段AB的中点,CD∥BE,且CD=BE,试说明∠D=∠E的理由.
网友回答
解:∵C是AB的中点(已知),
∴AC=CB(线段中点的定义).
∵CD∥BE(已知),
∴∠ACD=∠B(两直线平行,同位角相等).
在△ACD和△CBE中,,
∴△ACD≌△CBE(SAS).
∴∠D=∠E(全等三角形的对应角相等).
解析分析:根据中点定义求出AC=CB,两直线平行,同位角相等,求出∠ACD=∠B,然后证明△ACD和△CBE全等,再利用全等三角形的对应角相等进行解答.
点评:本题主要考查了全等三角形的判定与全等三角形的性质,确定用SAS定理进行证明是关键.