已知定义域为R的函数f(x)对任意实数x,y满足:f(x+y)+f(x-y)=2f(x)f(y),且f(x)不是常函数,常数t>0使f(t)=0,给出下列结论:①;②

发布时间:2020-08-05 12:39:03

已知定义域为R的函数f(x)对任意实数x,y满足:f(x+y)+f(x-y)=2f(x)f(y),且f(x)不是常函数,常数t>0使f(t)=0,给出下列结论:①;②f(x)是奇函数;③f(x)是周期函数且一个周期为4t;④f(x)在(0,2t)内为单调函数.其中正确命题的序号是________.

网友回答



解析分析:根据题意,在f(x+y)+f(x-y)=2f(x)f(y)中,令y=0可得2f(x)=2f(x)f(0),进而分析可得f(0)=1,依次分析4个命题,对于①、令x=y=,可得f(t)+f(0)=2f()2,易得f()2=±,故①错误,对于②、令x=0,可得f(y)+f(-y)=2f(0)f(y)=2f(y),分析可得f(y)+f(-y)=0不恒成立,f(x)不是奇函数,故②错误,对于③、令y=t可得,在f(x+t)+f(x-t)=2f(x)f(t)=0,可得f(x+t)=-f(x-t),进而可得f(x+3t)=-f(x+t)=f(x-t),即f(x+3t)=f(x-t),可以判断③正确,对于④、根据题意,无法判断f(x)的单调性,则④错误;综合可得
以上问题属网友观点,不代表本站立场,仅供参考!