已知函数f(x)是定义在区间[-2,2]上的偶函数,当x∈[0,2]时,f(x)是减函数,如果不等式f(1-m)<f(m)成立,则实数m的取值范围是________.

发布时间:2020-08-05 11:33:25

已知函数f(x)是定义在区间[-2,2]上的偶函数,当x∈[0,2]时,f(x)是减函数,如果不等式f(1-m)<f(m)成立,则实数m的取值范围是________.

网友回答

[-1,)

解析分析:由题设条件知,偶函数f (x)在[0,2]上是减函数,在[-2,0]是增函数,由此可以得出函数在[-2,2]上具有这样的一个特征--自变量的绝对值越小,其函数值就越小,由此抽象不等式f(1-m)<f(m)可以转化为,解此不等式组即可.

解答:偶函数f (x)在[0,2]上是减函数,
∴其在(-2,0)上是增函数,由此可以得出,自变量的绝对值越小,函数值越小
∴不等式f(1-m)<f(m)可以变为,
解得:m∈[-1,).
以上问题属网友观点,不代表本站立场,仅供参考!