如图,已知∠AOB=120°,OM平分∠AOB,将正三角形的一个顶点P放在射线OM上,两边分别与OA、OB交于点C、D.(1)如图①若边PC和OA垂直,那么线段PC和

发布时间:2020-08-07 00:31:52

如图,已知∠AOB=120°,OM平分∠AOB,将正三角形的一个顶点P放在射线OM上,两边分别与OA、OB交于点C、D.

(1)如图①若边PC和OA垂直,那么线段PC和PD相等吗?为什么?
(2)如图②将正三角形绕P点转过一角度,设两边与OA、OB分别交于C′,D′,那么线段PC′和PD′相等吗?为什么?

网友回答

解:(1)PC和PD相等.
理由:∵OM平分∠AOB,
∴∠POC=∠POD=60°,
∵PC⊥OA,
∴∠CPO=180°-90°-60°=30°,
∵∠CPD=60°,
∴∠DPO=∠CPD-∠CPO=30°,
∴∠CPO=∠DPO;
∵PO=PO,
∴△PCO≌△PDO(ASA),
∴PC=PD.

(2)PC′和PD′相等.
理由:由(1)得△PCO≌△PDO,
∴PC=PD,∠PCC′=∠PDD′=90°,
∵∠CPD=∠C′PD′,
∴∠CPD-∠C′PD=∠C′PD′-∠C′PD,
即∠CPC′=∠DPD′,
∴根据“ASA”,可以得到△PCC′≌△PDD′.
∴PC′=PD′.
解析分析:(1)PC、PD相等,可通过△OCP≌△ODP来实现;若PC与OA垂直,可求得∠OPC=∠OPD=30°,而OM平分∠AOB,加上公共边OP,即可证得所求的三角形全等,由此得证.
(2)按照(1)的思路,可通过△PCC′≌△PDD′来得到所求的结论;由(1)得:∠PCC′=∠PDD′=90°,且PC=PD,根据旋转的性质知:∠CPC′=∠DPD′,由此可证得所求的三角形全等,即可得证.

点评:此题主要考查的是全等三角形的判定和性质以及角平分线的定义及等边三角形的性质;证明三角形全等是正确解答本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!