如图,在四边形BFCD中,点E、A两点在FC上,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么?
网友回答
解:BF、DE互相平行;
理由:如图,设AB与DE交于点H,
∵∠3=∠4,
∴BD∥CF;
∴∠5=∠BAF;
又∵∠5=∠6,
∴∠BAF=∠6;
∴AB∥CD;
∴∠2=∠EHA;
又∵∠1=∠2,即∠1=∠EHA,
∴BF∥DE.
解析分析:设AB与DE相交于H,若判断ED与FB的位置关系,首先要判断∠1和∠EHA的大小;由∠3=∠4可证得BD∥CF(内错角相等,两直线平行),可得到∠5=∠BAF;已知∠5=∠6,等量代换后发现AB∥CD,即∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断出BF、DE的位置关系.
点评:本题考查平行线的判定与性质,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.