如图,抛物线交x轴于点A、B,交y轴于点C,连接AC,BC,D是线段OB上一动点,以CD为一边向右侧作正方形CDEF,连接BF,交DE于点P.
(1)试判断△ABC的形状,并说明理由;
(2)求证:BF⊥AB;
(3)连接CP,记△CPF的面积为S1,△CPB的面积为S2,若S=S1-S2,试探究S的最小值.
网友回答
(1)解:令x=0,得y=4,
∴C(0,4),
令y=0,得x1=4,x2=-4,
∴A(-4,0),B(4,0),
∴OA=OB=OC,
∴△ABC是等腰直角三角形;
(2)证明:如图,∵△ABC是等腰直角三角形,CDEF是正方形,
∴AC=BC,CD=CF,∠ACD=∠BCF,
在△ACD和△BCF中
,
∴△ACD≌△BCF(SAS),
∴∠CBF=∠CAD=45°,
∴∠ABF=∠ABC+∠CBF=90°,
∴BF⊥AB.
(3)解:连接CP,
∵∠CDE=90°,
∴∠CDO+∠PDB=90°,
∵∠CDO+∠DCO=90°,
∴∠DCO=∠PDB,
∴△DCO∽△PDB,
∴,
设OD=x,BP=y,则,
∴,
∵BF=AD=4+x,
∴,
∴=x2-2x+8=(x-1)2+7,
∴当OD=x=1时,S有最小值7.
解析分析:(1)由抛物线交x轴于点A、B,当x=0,求出图象与y轴的交点坐标,以及y=0,求出图象与x轴的交点坐标,即可得出三角形的形状;
(2)首先证明△ACD≌△BCF,利用三角形的全等,得出∠ABF=∠ABC+∠CBF=90°,即可得出