如图,等腰梯形ABCD中,E是底边BC上的一点,且∠EAD=∠EDA.
求证:BE=CE.
网友回答
证明:∵四边形ABCD是等腰梯形,
∴AB=DC,∠B=∠C,
∵∠EAD=∠EDA,AD∥BC,
∴∠AEB=∠DEC,
在△ABE和△DCE中,
∴△ABE≌△DCE(AAS),
∴BE=CE.
解析分析:根据等腰梯形的性质可得出AB=DC,∠B=∠C,再由∠EAD=∠EDA,可得出∠AEB=∠DEC,从而可证明△ABE≌△DCE,继而可得出结论.
点评:此题考查了等腰梯形的性质、全等三角形的判定及性质,属于基础题,解答本题的关键是掌握等腰梯形的性质,难度一般.