问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A?B′与直线l交于点C,则点C即为所求.
(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A?在⊙O?上,∠ACD=30°,B?为弧AD?的中点,P为直径CD上一动点,则BP+AP的最小值为______.
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
网友回答
解:(1)作点B关于CD的对称点E,连接AE交CD于点P
此时PA+PB最小,且等于AE.
作直径AC′,连接C′E.
根据垂径定理得弧BD=弧DE.
∵∠ACD=30°,
∴∠AOD=60°,∠DOE=30°,
∴∠AOE=90°,
∴∠C′AE=45°,
又AC′为圆的直径,∴∠AEC′=90°,
∴∠C′=∠C′AE=45°,
∴C′E=AE=AC′=2,
即AP+BP的最小值是2.
故