△ABC中,(1)若∠A=70°,BO、CO分别平分∠ABC和∠ACB,求∠BOC的度数;(2)若∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,请直接写出用n°

发布时间:2020-08-07 10:17:19

△ABC中,
(1)若∠A=70°,BO、CO分别平分∠ABC和∠ACB,求∠BOC的度数;
(2)若∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,请直接写出用n°表示∠BOC的关系式.

网友回答

解:(1)∵BO、CO分别平分∠ABC和∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∵∠A=70°,
∴∠BOC=180°-∠OBC-∠OCB=180°-(180°-70°)=125°.
故∠BOC的度数为:125°. 

(2)∵∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,
∵∠BOC=180°-∠OBC-∠OCB=180°-(∠OBC+∠OCB)=180°-(180°-n°)=120°+n°.
故∠BOC=120°+n°.
解析分析:(1)根据三角形角平分线的定义可分别表示∠OBC,∠OCB,再根据三角形内角和定理不难求得∠BOC的度数.
(2)根据三角形内角和定理及三角形各角之间的关系不难表示出∠BOC.

点评:此题主要考查学生对三角形角平分线的定义及三角形内角和定理的综合运用.
以上问题属网友观点,不代表本站立场,仅供参考!