已知直角梯形ABCD中,AD∥BC,∠B=90°,BC=CD=4,AD=2,点P是直线BC上的一个动点,那么当∠PAB的度数为________时,A、P、C、D四点构

发布时间:2020-08-08 01:39:21

已知直角梯形ABCD中,AD∥BC,∠B=90°,BC=CD=4,AD=2,点P是直线BC上的一个动点,那么当∠PAB的度数为________时,A、P、C、D四点构成平行四边形.

网友回答

30°或60°
解析分析:由已知可得出两种情况如图,第一种情况点P在B、C之间,过点D作DP⊥BC于P,则得:AD=BP=PC=CD,所以∠PDC=30°,此时A、P、C、D四点构成平行四边形,即得∠PAB=30°.
第二种情况点P在BC的延长线上,连接EF,由第一种情况可得∠AEB=60°,△EFC为等边三角形,所以得∠FEC=60°,则∠AEF=60°,又AE=CD,假设A、P、C、D四点构成平行四边形.
所以AD=CP,AF=PFM,所以可得AE=EP,那么EF⊥AP,所以∠AFE=90°,因此EAF=∠BPA=30°,则∠PAB=60°.

解答:第一种情况:
过点D作DP⊥BC于P,则得:AD=BP=PC=CD,所以∠PDC=30°
此时A、P、C、D四点构成平行四边形,即得∠PAB=30°.第二种情况:
由第一种情况,再连接EF,由第一种情况可得∠AEB=60°,△EFC为等边三角形,
所以得∠FEC=60°,则∠AEF=60°,
又∵AE=CD,假设A、P、C、D四点构成平行四边形.
所以AD=CP,AF=PF,
所以可得AE=EP,
那么EF⊥AP,
所以∠AFE=90°,
因此EAF=∠BPA=30°,
则∠PAB=60°.
以上问题属网友观点,不代表本站立场,仅供参考!