如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,则AC的长为A.B.3C.6D.9

发布时间:2020-08-09 18:27:11

如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,则AC的长为A.B.3C.6D.9

网友回答

C
解析分析:首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠3,根据角平分线的定义推知∠1=∠3,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.

解答:解:如图,∵D、E分别为AC、BC的中点,
∴DE∥AB,
∴∠2=∠3,
又∵AF平分∠CAB,
∠1=∠3,
∴∠1=∠2,
∴AD=DF=3,
∴AC=2AD=6.
故选C.

点评:本题考查了三角形中位线定理,等腰三角形的判定与性质.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.
以上问题属网友观点,不代表本站立场,仅供参考!