如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,
(1)试说明CD是△BCE的角平分线;
(2)找出图中与∠B相等的角.
网友回答
解:(1)∵∠A=30°,∠B=70°,
∴∠ACB=80°.
∵CE平分∠ACB,
∴∠BCE=40.
∵∠B=70°,∠CDB=90°,
∴∠BCD=20°.
∴∠ECD=∠BCD=20°.
∴CD是△BCE的角平分线.
(2)∵∠ECD=20°,∠CDE=90°,
∴∠CEB=70°.
∴∠B=∠CEB.
∵∠CFD=90°,∠FCD=20°,
∴∠CDF=70°.
∴∠CDF=∠B.
∴与∠B相等的角是:∠CEB、∠CDF.
解析分析:(1)根据∠A=30°,∠B=70°,得∠ACB=80°,由角平分线的定义得∠BCE=40,根据三角形的内角和定理得∠BCD=20°,从而得出CD是△BCE的角平分线.
(2)根据ASA得出△CDE≌△CDB,得∠B=∠CEB.根据等角的余角相等,得∠B=∠CDF.
点评:本题主要考查了角平分线的判定、全等三角形的判定、等角的余角相等等知识,要牢固掌握并灵活运用这些知识.