(1)如图1,已知△ABC,过点A画一条平分三角形面积的直线;(2)如图2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等;(3

发布时间:2020-08-09 05:57:37

(1)如图1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等;
(3)如图3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.

网友回答

(1)解:取BC的中点D,过A、D画直线,则直线AD为所求;

(2)证明:∵l1∥l2,
∴点E,F到l2之间的距离都相等,设为h.
∴S△EGH=GH?h,S△FGH=GH?h,
∴S△EGH=S△FGH,
∴S△EGH-S△GOH=S△FGH-S△GOH,
∴△EGO的面积等于△FHO的面积;

(3)解:取BC的中点D,连接MD,过点A作AN∥MD交BC于点N,过M、N画直线,则直线MN为所求.
解析分析:(1)根据三角形的面积公式,只需过点A和BC的中点画直线即可;
(2)结合平行线间的距离相等和三角形的面积公式即可证明;
(3)结合(1)和(2)的结论进行求作.

点评:此题主要是根据三角形的面积公式,知:三角形的中线把三角形的面积等分成了相等的两部分;同底等高的两个三角形的面积相等.
以上问题属网友观点,不代表本站立场,仅供参考!