设函数f(x)=loga(x-3a)(a>0,且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,点Q(x-2a,-y)是函数y=g(x)图象上的点.(1)写

发布时间:2020-08-11 03:55:18

设函数f(x)=loga(x-3a)(a>0,且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,点Q(x-2a,-y)是函数y=g(x)图象上的点.
(1)写出函数y=g(x)的解析式;
(2)若当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试确定a的取值范围;
(3)把y=g(x)的图象向左平移a个单位得到y=h(x)的图象,函数F(x)=2a1-h(x)-a2-2h(x)+a-h(x),(a>0,且a≠1)在的最大值为,求a的值.

网友回答

(本小题满分12分)
解:(1)设点Q的坐标为(x',y'),则x'=x-2a,y'=-y,即x=x'+2a,y=-y'.
∵点P(x,y)在函数y=loga(x-3a)图象上
∴-y'=loga(x'+2a-3a),即

(2)由题意x∈[a+2,a+3],则x-3a=(a+2)-3a=-2a+2>0,.
又a>0,且a≠1,∴0<a<1,
∵|f(x)-g(x)|≤1∴,r(x)=x2-4ax+3a2对称轴为x=2a
∵0<a<1∴a+2>2a,则r(x)=x2-4ax+3a2在[a+2,a+3]上为增函数,
∴函数在[a+2,a+3]上为减函数,
从而[u(x)]max=u(a+2)=loga(4-4a).
[u(x)]min=u(a+3)=loga(9-6a),


(3)由(1)知,而把y=g(x)的图象向左平移a个单位得到y=h(x)的图象,则,
∴,
即F(x)=-a2x2+(2a+1)x,又a>0,且a≠1,F(x)的对称轴为,又在的最大值为,
①令;此时F(x)在上递减,∴F(x)的最大值为,此时无解;
②令,又a>0,且a≠1,∴;此时F(x)在上递增,∴F(x)的最大值为,又,∴无解;
③令且a>0,且a≠1
∴,此时F(x)的最大值为,
解得:,又,∴;
综上,a的值为.
解析分析:(1)设点Q的坐标为(x',y'),利用x'=x-2a,y'=-y,转化x=x'+2a,y=-y'.通过点P(x,y)在函数y=loga(x-3a)图象上,代入即可得到函数y=g(x)的解析式;
(2)通过x∈[a+2,a+3],求出|f(x)-g(x)|的最大值,利用最大值≤1,即可确定a的取值范围;
(3)利用把y=g(x)的图象向左平移a个单位得到y=h(x)的图象,求出h(x)的解析式,通过函数F(x)=2a1-h(x)-a2-2h(x)+a-h(x),(a>0,且a≠1)求出F(x)的不等式,通过二次函数在的最大值为,求a的值.

点评:本题考查函数的解析式的求法,坐标变换,函数的最值的应用,函数恒成立问题,二次函数闭区间上的最值问题的求解,综合知识点多,难度较大.
以上问题属网友观点,不代表本站立场,仅供参考!