如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为___

发布时间:2020-08-09 16:27:16

如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为________.

网友回答


解析分析:由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为FM的长.

解答:∵△DAE逆时针旋转90°得到△DCM,
∴∠FCM=∠FCD+∠DCM=180°,
∴F、C、M三点共线,
∴DE=DM,∠EDM=90°,
∴∠EDF+∠FDM=90°,
∵∠EDF=45°,
∴∠FDM=∠EDF=45°,
在△DEF和△DMF中,

∴∴△DEF≌△DMF(SAS),
∴EF=MF,
设EF=MF=x,
∵AE=CM=1,且BC=3,
∴BM=BC+CM=3+1=4,
∴BF=BM-MF=BM-EF=4-x,
∵EB=AB-AE=3-1=2,
在Rt△EBF中,由勾股定理得EB2+BF2=EF2,
即22+(4-x)2=x2,
解得:x=,
∴FM=.
以上问题属网友观点,不代表本站立场,仅供参考!