设m是不为零的整数,关于x的二次方程mx2-(m-1)x+1=0有有理根,求m的值.
网友回答
解:一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令
△=(m-1)2-4m=n2,
其中n是非负整数,于是
m2-6m+1=n2,
所以(m-3)2-n2=8,
(m-3+n)(m-3-n)=8.
由于m-3+n≥m-3-n,并且
(m-3+n)+(m-3-n)=2(m-3)
是偶数,所以m-3+n与m-3-n同奇偶,所以
∴;(舍去)
∴m=6,这时方程的两根为,.
∴二次方程mx2-(m-1)x+1=0有有理根m的值为6.
解析分析:利用一个整系数的一元二次方程如果有整数根或有理根,那么它的判别式一定是完全平方数,然后利用平方数的性质、解不定方程等手段可以将问题解决.
点评:此题主要考查了一元二次方程根的判别式,以及整数的奇偶性和完全平方数等知识,综合性较强.