如下图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S

发布时间:2020-07-30 00:09:29

如下图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是A.S1+S2>S3B.S1+S2=S3C.S1+S2<S3D.无法确定

网友回答

B
解析分析:分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r1)2+(2r2)2的关系,可以求得S1+S2=S3.

解答:设大圆的半径是r3,则S3=πr32;设两个小圆的半径分别是r1和r2,则S1=πr12,S2=πr22.由勾股定理,知(2r3)2=(2r1)2+(2r2)2,得r32=r12+r22.所以S1+S2=S3.故选B.

点评:本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r3)2=(2r1)2+(2r2)2是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!