如图①,△ABC是等边三角形,D、E分别为边BC和AC上的点,且BD=CE,过D作BE的平行线,过E作BC的平行线,它们交于点F,连接AF.(1)求证:△ABE≌△C

发布时间:2020-08-09 11:56:47

如图①,△ABC是等边三角形,D、E分别为边BC和AC上的点,且BD=CE,过D作BE的平行线,过E作BC的平行线,它们交于点F,连接AF.
(1)求证:△ABE≌△CAD;
(2)试判断△ADF的形状,并说明理由;
(3)若将D、E分别移为边CB的延长线和AC的延长线上的点,其它条件不变(如图②),则△ADF的形状是否改变,说明理由.

网友回答

(1)证明:∵△ABC是等边三角形,
∴∠BAE=∠C=60°,AB=AC=BC;
∵BD=CE,
∴AC-CE=BC-BD,∴AE=CD;
又AB=AC,
∴△ABE≌△CAD;

(2)△ADF是等边三角形,理由如下:
∵△ABC是等边三角形,∴∠BAC=60°;
∵DF∥BE,EF∥BC,
∴∠1=∠2,四边形BDFE是平行四边形;
∴BE=DF;
∵△ABE≌△CAD,∴∠4=∠5,BE=AD,∴DF=AD;
∵∠1=∠3+∠4,∴∠2=∠3+∠5=∠BAC=60°;
∴△ADF是等边三角形;

(3)△ADF仍是等边三角形,理由如下:
∵△ABC是等边三角形,∴∠ABC=∠BAE=∠C=60°,AB=BC;
∴∠ABD=∠BCD=180°-120°;
∵BD=CE,∴△ABD≌△BCE,∴∠1=∠3,BE=AD;
∵DF∥BE,EF∥BC,
∴∠1=∠2,四边形BDFE是平行四边形;
∴BE=DF,∴DF=AD;
∵∠3+∠4=∠ABC=60°,∴∠2+∠4=60°即∠ADF=60°
∴△ADF是等边三角形.
解析分析:(1)△ABE、△CAD中,已知的条件有:AB=AC,∠BAE=∠ACD=60°;若求两个三角形全等,只需再证得AE=CD即可,易知AC=BC,而BD=CE,即可得到AE=CD,由此得证;
(2)易证得四边形BDFE是平行四边形,则BE=DF=AD;设AD、BE交于G,则∠ADF=∠BGD;
而∠BGD=∠ABE+∠DAB,由(1)的全等三角形知:∠DAC=∠ABE,故∠BGD=∠DAC+∠DAB=60°,等量代换后,可求得∠ADF=60°,即可得到△ADF是等边三角形的结论.
(3)与(2)的结论相同,解题思路与(1)(2)完全相同.

点评:此题综合考查了等边三角形、全等三角形的判定和性质以及平行四边形的性质.
以上问题属网友观点,不代表本站立场,仅供参考!