若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2且x1≠x2,有下列结论:①x1=2,x2=3;?②m>-;?③二次函数y=(x-x1)(x-x2)+

发布时间:2020-08-08 21:45:59

若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2且x1≠x2,有下列结论:
①x1=2,x2=3;?②m>-;?③二次函数y=(x-x1)(x-x2)+m的图象与x轴的交点坐标为(2,0)(3,0).
其中,正确结论的个数是________.

网友回答

2
解析分析:将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集即可对选项②进行判断;
再利用根与系数的关系求出两根之积为6-m,这只有在m=0时才能成立,故选项①错误;
将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项③进行判断.

解答:一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,
∵方程有两个不相等的实数根x1、x2,
∴b2-4ac=(-5)2-4(6-m)=4m+1>0,
解得:m>-,故选项②正确;∵一元二次方程实数根分别为x1、x2,
∴x1+x2=5,x1x2=6-m,
而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m=x2-5x+6=(x-2)(x-3),
令y=0,可得(x-2)(x-3)=0,
解得:x=2或3,
∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.
综上所述,正确的结论有2个:②③.
以上问题属网友观点,不代表本站立场,仅供参考!