如图,在矩形ABCD中,AB=18cm,AD=9cm,点M沿AB边从A点开始向B以2cm/s的速度移动,点N沿DA边从D点开始向A以1cm/s的速度移动.如果点M、N

发布时间:2020-08-09 15:47:17

如图,在矩形ABCD中,AB=18cm,AD=9cm,点M沿AB边从A点开始向B以2cm/s的速度移动,点N沿DA边从D点开始向A以1cm/s的速度移动.如果点M、N同时出发,用t(s)表示移动时间(0≤t≤9),求:
(1)当t为何值时,∠ANM=45°?
(2)计算四边形AMCN的面积,根据计算结果提出一个你认为合理的结论;
(3)当t为何值时,以点M、N、A为顶点的三角形与△BCD相似?

网友回答

解:(1)对于任何时刻t,AM=2t,DN=t,NA=9-t,
当AN=AM时,△MAN为等腰直角三角形,即:9-t=2t,
解得:t=3(s),
所以,当t=3s时,△MAN为等腰直角三角形.

(2)在△NAC中,NA=9-t,NA边上的高DC=12,
∴S△NAC=NA?DC=(9-t)?18=81-9t.
在△AMC中,AM=2t,BC=9,
∴S△AMC=AM?BC=?2t?9=9t.
∴S四边形NAMC=S△NAC+S△AMC=81(cm2).
由计算结果发现:
在M、N两点移动的过程中,四边形NAMC的面积始终保持不变.(也可提出:M、N两点到对角线AC的距离之和保持不变)

(3)根据题意,可分为两种情况来研究,在矩形ABCD中:
①当 NA:AB=AM:BC时,△NAP∽△ABC,那么有:
( 9-t):18=2t:9,解得t=1.8(s),
即当t=1.8s时,△NAP∽△ABC;
②当 NA:BC=AM:AB时,△MAN∽△ABC,那么有:
( 9-t):9=2t:18,解得t=4.5(s),
即当t=4.5s时,△MAN∽△ABC;
所以,当t=1.8s或4.5s时,以点N、A、M为顶点的三角形与△ABC相似.
解析分析:(1)根据题意分析可得:因为对于任何时刻t,AM=2t,DN=t,NA=9-t.当NA=AM时,△MAN为等腰直角三角形,可得方程式,解可得
以上问题属网友观点,不代表本站立场,仅供参考!