如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
网友回答
解:如图:延长AB.
∵CD∥AB,
∴∠CAB=30°,∠CBF=60°;
∴∠BCA=60°-30°=30°,即∠BAC=∠BCA;
∴BC=AB=3米;
Rt△BCF中,BC=3米,∠CBF=60°;
∴BF=BC=1.5米;
故x=BF-EF=1.5-0.8=0.7米.
答:这时汽车车头与斑马线的距离x是0.7米.
解析分析:根据已知角的度数,易求得∠BAC=∠BCA=30°,由此得BC=AB=3米;可在Rt△CBF中,根据BC的长和∠CBF的余弦值求出BF的长,进而由x=BF-EF求得汽车车头与斑马线的距离.
点评:本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.