如图,有一抛物线拱桥,已知水位线在AB位置时,水面的宽为m,水位上升4m就到达警戒线CD,这时水面的宽为m,若洪水到来时,水位以每小时0.5m的速度上升,测水过警戒线

发布时间:2020-08-07 17:18:13

如图,有一抛物线拱桥,已知水位线在AB位置时,水面的宽为m,水位上升4m就到达警戒线CD,这时水面的宽为m,若洪水到来时,水位以每小时0.5m的速度上升,测水过警戒线后几小时淹没到拱桥顶端M处?

网友回答

解:设函数的解析式为y=a(x-2)(x+2),由题意,得
4=a(2-2)(2+2),
解得a=-,
则y=-x2+8.
当x=0时,
y=8,
则OM=8.
则水过警戒线后淹没到拱桥顶端M处的时间为:(8-4)÷0.5=8小时.
答:水过警戒线后淹没到拱桥顶端M处的时间为8小时.
解析分析:先运用待定系数法求出函数的解析式,根据解析式就可以求出OM的值,根据时间=路程÷速度就可以得出结论.

点评:本题考查了待定系数法求二次函数的解析式的运用,行程问题时间=路程÷速度的数量关系的运用,解答时求出解析式是关键.
以上问题属网友观点,不代表本站立场,仅供参考!